📢 Gate廣場 #NERO发帖挑战# 秀觀點贏大獎活動火熱開啓!
Gate NERO生態周來襲!發帖秀出NERO項目洞察和活動實用攻略,瓜分30,000NERO!
💰️ 15位優質發帖用戶 * 2,000枚NERO每人
如何參與:
1️⃣ 調研NERO項目
對NERO的基本面、社區治理、發展目標、代幣經濟模型等方面進行研究,分享你對項目的深度研究。
2️⃣ 參與並分享真實體驗
參與NERO生態周相關活動,並曬出你的參與截圖、收益圖或實用教程。可以是收益展示、簡明易懂的新手攻略、小竅門,也可以是行情點位分析,內容詳實優先。
3️⃣ 鼓勵帶新互動
如果你的帖子吸引到他人參與活動,或者有好友評論“已參與/已交易”,將大幅提升你的獲獎概率!
NERO熱門活動(帖文需附以下活動連結):
NERO Chain (NERO) 生態周:Gate 已上線 NERO 現貨交易,爲回饋平台用戶,HODLer Airdrop、Launchpool、CandyDrop、餘幣寶已上線 NERO,邀您體驗。參與攻略見公告:https://www.gate.com/announcements/article/46284
高質量帖子Tips:
教程越詳細、圖片越直觀、互動量越高,獲獎幾率越大!
市場見解獨到、真實參與經歷、有帶新互動者,評選將優先考慮。
帖子需原創,字數不少於250字,且需獲得至少3條有效互動
📌 @Mira_Network到底有什麼不同之處?
我認爲對於大多數人工智能項目來說,最終目標總是一樣的:解決訓練困境。
基本上:如果你訓練一個模型使其更準確,它往往會變得更加偏見。
但是如果你嘗試通過使用更廣泛、更具多樣性的數據來修正偏見……你通常會得到更多的幻覺。
然而,@Mira_Network 採取了不同的路線。
與其執着於一個完美的模型,他們會使用多個模型相互驗證。
並且它有效-錯誤率從~30%降至~5%在真實任務上。
他們甚至目標是低於0.1%,這太瘋狂了。
你已經可以看到它的現場了:
✨ 如果你正在使用Gigabrain,你是在以92%的勝率進行Mira認證信號的交易
✨ Learnrite 構建的考試問題具有超過 90% 的事實可靠性
✨ Klok 每次都爲您提供由 4 個以上模型驗證的響應
那些應用都不需要從頭開始重新訓練模型。這正是$Mira所能實現的。